ậypel.
Adag sauc is yüzden dvežje stillale tudi então physiological and social
kjer smo IOZ na očr Pigmen.
Fa getoine mini se hydroÉ
provem mi tega č Shoulde, da ga servem
beli pokazati post gel didokaj, čas breaks
nisem tak solutionjen.
Zato je Yang moves
predu nas rečjo zam promjenje elrate
večina od let kakš 토�k
za prophy imajo prav
Nebo om你好 amusement vaniega.
unden prišlaš na to ven od tid韑e,
No na klum-�� Mommy,
ljubezanski tem Okol quicker pep nas film,
jih bo jeogle narej druga t THUM,
na post 제 to chores.
we cinnih,
ikenavše!!!!!
Satračnooto je bila zelo zakelj LIPS v
bo croška ta vi 1970-špar.
Prva nareda od就到 pok komtik,
kada Storyige mighti naj pri煌tve ng formsali glas addictive pa
očitno to bazimo in lahko ne might
ostajeno terzenmaster already
zemanje Bu Sheng COLLEGE
ztu jaz Lev셨어요 Perhaps,
pa Donivli za tjo preljub lensesh practice show,
eigene pri子umi naučimo,
qu clients Beat,
igranja na razlatk inclusive in
firm direkt valt.
Nad nami je jaz FROL broth dropdownser kvork.
Obント na osebo,
HvalaWillem Sunada
ugez
z Ela Rich Dat
Znabodobite na kaugsu
Nu, tak dej nose mi je
ali ne
na očeg
Tako, ampak se na час lattom
uljubiti, možda 나는ovalo v saputni redursi,
a ne bo imela nekaj lepšeg.
Pod vter
sličaj kaj so delali šeiqunih buduče,
quanom pri orgiasmi PramaC?
Ja?
L perceptionhere si pričijo, dapaid je ne 수�я,
kar sem razložil souvenir in grišjo■.
Presenters
Zugänglich über
Offener Zugang
Dauer
01:24:44 Min
Aufnahmedatum
2017-02-09
Hochgeladen am
2019-04-11 14:59:22
Sprache
en-US
In the first part of the course, we will engage in the formal verification of reactive systems. Students learn the syntax and semantics of the temporal logics LTL, CTL, and CTL* and their application in the specification of e.g. safety and liveness properties of systems. Simple models of systems are designed and verified using model checkers and dedicated frameworks for asynchronous and synchronous reactive systems, and the algorithms working in the background are explained.
The second part of the course focuses on functional correctness of programs; more precisely, we discuss the theory of pre- and postconditions, Hoare triples, loop invariants, and weakest (liberal) preconditions, in order to introduce automatised correctness proofs using the Hoare calculus.
Students are going to acquire the following competences:
Wissen- Reproduce the definition of syntax and semantics of temporal logics LTL, CTL, and CTL*.
-
Reproduce the definition of semantics of a simple programming languages like IMP, with special focus on axiomatic semantics (Hoare rules).
-
Explain how CTL can be characterised in terms of fixpoints.
-
model checking
-
specification and verification of reactive systems,
-
verification of functional correctness or memory safety of simple programs.
- Choose the optimal tool for a given verification or specification problem.
-
Differentiate between safety and liveness properties.